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Abstract 

This study investigates the applications of machine learning techniques for predicting the stroke 

risks using clinical, behavioral and demographic features. Multiple classification models were 

evaluated, and the random forest classifier achieved the highest performance, with a recall rate 

for stroke of 98% and an AUC of 0.98. Feature importance analysis showed that age, average 

glucose level, and BMI are the most influential predictors. From an operational perspective, 

integrating predicting modelling into healthcare systems can facilitate early risk detection and 

support personalized care strategies. 
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Introduction 

Based on the World Stroke Organization’s estimates, approximately 15 million people suffer 

from a stroke each year, and about 5 million die from stroke-related reasons (World Health 

Organization, 2021). Stroke is one of the leading causes of death and disability. It not only 

affects those who are experiencing it but also their families and wider society (Edmans et al., 

2010), and it can occur in anyone at any age (Elloker & Rhoda, 2018). Therefore, a deeper 

understanding of the stroke mechanisms and establishing effective risk stratification strategies 

are urgently needed for both primary and secondary prevention. Managing modifiable risk 

factors could help prevent nearly half of all strokes among individuals at high risk (Brainin et al., 

2018). 

Machine Learning (ML) has been rapidly developed and implemented across disciplines and is 

becoming a transformative force in healthcare research and practice (Dritsas & Trigka, 2022). 

By leveraging algorithms that are capable of capturing complex, and often hidden relationships 

among diverse clinical, demographic and physiological variables from many origins including 

patients’ history, imaging and biomarkers (Singh et al., 2025), ML enables more accurate 

prediction and decision-making than traditional statistical methods. One application of ML is in 

precision medicine, where ML models are developed to identify the most effective treatment 

strategies based on an individual’s unique conditions (Lee et al., 2018). Machine learning 

applications in healthcare have expanded rapidly. In the context of stroke, ML techniques have 

been increasingly used to identify and predict risk factors that contribute to stroke occurrence, 

recurrence, and recovery outcomes. Predictive models using logistic regression, random forests, 

gradient boosting, and neural networks have shown strong performance in recognizing key 

determinants such as age, hypertension, diabetes, smoking, and heart disease (Ahammad, 

2022; Hassan et al., 2024; Khosla et al., 2010). 
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Identifying these factors not only facilitates early intervention and resource allocation but also 

provides data-driven guidance for healthcare systems to design more efficient prevention and 

management strategies. 

 

Backgrounds 

Stroke is influenced by a complex interplay of nonmodifiable and modifiable risk factors. 

Nonmodifiable factors include age, sex, race–ethnicity, and genetics. The incidence of stroke 

doubles with every decade after age 55, and while the mean age of ischemic stroke remains 

around 69 years, recent evidence shows a rise among adults aged 20–54 years, increasing from 

12.9% in 1993/1994 to 18.6% in 2005 (George et al., 2011; Kissela et al., 2012; Roger et al., 

2012; Van Asch et al., 2010). The relationship between sex and stroke risk is age dependent: 

younger women face similar or slightly higher risk than men—likely due to pregnancy, hormonal 

contraception, and postpartum factors—whereas men have a higher risk in later life (Asplund et 

al., 2009; Kapral et al., 2005; Reeves et al., 2009). Racial and ethnic disparities are also 

pronounced. Black Americans experience twice the incidence and higher mortality rates than 

White populations (Cruz-Flores et al., 2011; Gillum, 1999b), with similar elevations reported 

among Hispanic/Latino and American Indian groups (Kleindorfer et al., 2006). These inequalities 

are attributed in part to higher prevalence of hypertension, obesity, and diabetes (Giles et al., 

1995; Gillum, 1999a), but social determinants such as healthcare access, language, and nativity 

also play critical roles (Howard et al., 2011; Joubert et al., 2008). Genetic predisposition further 

contributes to stroke risk: a positive parental or family history increases the likelihood of stroke, 

with genetic effects varying across age, sex, and ethnicity (Seshadri et al., 2010). 

Modifiable risk factors provide key targets for prevention. Hypertension remains the most 

significant, accounting for roughly 54% of stroke population attributable risk in the 

INTERSTROKE study (Donnell et al., 2010). The risk of stroke rises progressively with blood 

pressure, even below the hypertensive threshold (Vasan et al., 2002). Diabetes mellitus doubles 

stroke risk and accounts for about 20% of deaths in diabetic patients, with longer duration of 

diabetes further increasing risk (Banerjee et al., 2012; Sui et al., 2011). Other major modifiable 

factors include atrial fibrillation and atrial cardiopathy (Yiin et al., 2014), dyslipidemia (particularly 

high total cholesterol and low HDL levels) (Horenstein et al., 2002), sedentary lifestyle, poor diet, 

obesity, and metabolic syndrome (Zhou et al., 2007), as well as alcohol consumption, illicit drug 

use, and cigarette smoking—the latter nearly doubling stroke risk and contributing to 15% of 

stroke deaths annually (Kuo et al., 2013). Emerging evidence also links inflammation, infection, 

and air pollution exposure to increased stroke incidence (Kaptoge et al., 2010). Together, these 

epidemiological findings underscore that both traditional and novel risk factors—spanning 

biological, behavioral, and environmental domains—must be integrated into predictive models 

and prevention strategies. 

Machine learning (ML) has emerged as a powerful analytical framework for predicting stroke risk 

by leveraging large-scale clinical and behavioral datasets. Numerous studies have applied 

classical ML algorithms—such as Logistic Regression (LR), Decision Tree (DT), Random Forest 

(RF), Support Vector Machine (SVM), Naïve Bayes (NB), and K-Nearest Neighbours (KNN)—to 

identify individuals at high risk of stroke, achieving accuracies ranging from 82% to 96% 

(Kokkotis et al., 2022; Sirsat et al., 2020; Wu & Fang, 2020). Among these, tree-based 

ensemble methods such as RF and Gradient Boosting consistently outperform traditional 

classifiers in accuracy, precision, and AUC performance. For instance, several studies reported 

RF models achieving 95–96% accuracy (Geethanjali et al., 2021; Tazin et al., 2021), while NB 

and LR models achieved competitive but slightly lower results (82–86%) (Geethanjali et al., 

2021). These results highlight ML’s potential to capture nonlinear relationships between stroke 

risk and clinical features such as age, hypertension, heart disease, glucose level, and smoking 

status (Sailasya & Kumari, 2021). 



 
Building on these foundational methods, researchers have explored advanced and hybrid 

approaches to enhance predictive performance. Shanthi et al.(2009) applied an Artificial Neural 

Network (ANN) to predict thromboembolic strokes, reaching 89% accuracy. Similarly, Ahmed et 

al. (2019) achieved 90% accuracy using ML algorithms on the Apache Spark platform, while 

Tazin et al. (2021) improved accuracy to 95% after applying normalization and feature-ranking 

procedures. Other hybrid models—such as the Minimal Genetic Folding (MGF) algorithm 

(Mezher, 2022) and the RXLM ensemble combining RF, XGBoost, and LightGBM (Alruily et al., 

2023)—further advanced predictive capacity, achieving 83% and 96.3% accuracy, respectively. 

To address data imbalance and enhance generalizability, many studies incorporated techniques 

such as SMOTE oversampling, feature selection, and outlier control (Sowjanya & Mrudula, 

2023; Wongvorachan et al., 2023). Some even implemented real-time or cloud-based prediction 

tools that can collect user data and deliver early stroke warnings with 96% accuracy (Islam et 

al., 2021). 

While progress in predictive modeling is significant, key methodological and practical challenges 

remain. Many existing studies rely on relatively small or imbalanced datasets, or focus on a 

limited number of attributes, constraining model robustness (Chen, 2023; Nijman et al., 2022; 

Paul et al., 2022). Furthermore, the high-performing ensemble and neural network models often 

function as “black boxes,” limiting interpretability and hindering clinical adoption. Another 

limitation lies in the lack of standardized evaluation metrics and external validation, which 

restricts comparability across studies. Therefore, the literature increasingly calls for the 

development of explainable ML frameworks, integration of diverse clinical and behavioral 

features, and comprehensive benchmarking on larger datasets. Such efforts are critical to 

ensure that predictive analytics can move beyond model optimization toward actionable, 

interpretable tools that support early stroke prevention and healthcare decision- making. 

Methods 

Our research utilized the publicly available Stroke Prediction Dataset from Kaggle (Stroke 

Prediction Dataset, 2025). From this dataset, we included only participants having no missing 

values, resulting in a total sample size of 4909 individuals. The dataset contains 10 predictor 

variables and one binary outcome variable indicating whether the participant has ever 

experienced a stroke. The predictors are defined as follows: Age (in years), Gender, Diagnosed 

hypertension, Heart Disease, Ever Married, Work Type (5 categories: private, self- employed, 

government job, never worked and children), Residence Type (urban, rural), Average Glucose 

Level (mg/dL), Body Mass Index (BMI) (kg/m²), and Smoking Status (three categories: currently 

smokes, never smoked, and formerly smoked). The outcome variable, Stroke, represents 

whether the participant has previously suffered a stroke. Among these variables, age, average 

glucose level, and BMI are continuous, while the remaining features are categorical. We 

normalized the continuous variables and performed one-hot encoding for the categorical 

variables. To address the class imbalance between stroke and non-stroke cases in subsequent 

analyses, we applied the Synthetic Minority Oversampling Technique (SMOTE) (Maldonado et 

al., 2019), which synthetically augments the minority (stroke) class to achieve a balanced 

dataset for model training. 

Machine Learning Models  

Random Forest Classifier 

The Random Forest (RF) algorithm is an ensemble learning method that constructs multiple 

decision trees and aggregates their predictions to improve generalization and classification 

performance. Given a training dataset: 



 
where xᵢ ∈ ℝᵖ denotes the feature vector with p predictors and yᵢ ∈ {0,1} represents the binary 

class label (stroke or non-stroke). The RF algorithm performs the following steps: 

1. Bootstrap sampling: Draw T bootstrap samples from the training set. 
2. Tree growth: For each sample, grow an unpruned classification tree. At each node, 

a random subset of m < p features is selected, and the best split among these m 

features is chosen to minimize impurity (e.g., Gini index or entropy). 

3. Aggregation: Each tree hₜ(x) provides a class prediction. The final prediction of the 

forest is obtained by majority voting across all trees: 

 

4. This ensemble approach reduces variance and mitigates overfitting by combining 
multiple decorrelated classifiers. 

 
k-Nearest Neighbor (kNN) Classifier 

The k-Nearest Neighbor (kNN) algorithm is a non-parametric, instance-based learning method 

that classifies a new observation based on the majority label among its nearest neighbors in 

the training set. For any two data points xᵢ and xⱼ, the distance function is defined as: 

 
Given a new observation x₀, the classifier identifies its k nearest neighbors, denoted Nₖ(x₀), 

and assigns the most frequent class label among them: 

 
For binary classification problems where yᵢ ∈ {−1, +1}, the decision rule can equivalently be 

written as: 

 

The hyperparameter k controls the bias–variance trade-off: smaller k values lead to lower 

bias but higher variance, while larger k values produce smoother decision boundaries with 

higher bias. 

 
Logistic Regression 
The Logistic Regression (LR) algorithm is a statistical learning method used for binary 

classification problems. It models the conditional probability of the dependent variable yᵢ ∈ 

{0,1} given the predictors xᵢ ∈ ℝᵖ using the logistic (sigmoid) function. The model assumes a 

linear relationship between the predictors and the log-odds of the probability of the positive 

class. The logistic regression function is defined as: 

 



 

The logistic regression model estimates the coefficients β = (β₀, β₁, …, βₚ) by maximizing the 

log-likelihood function ℓ(β): 

 
The fitted probabilities can then be used for classification, where an observation is predicted 

as stroke-positive if the estimated probability exceeds 0.5. This model provides a simple, 

interpretable baseline for binary classification, assuming a linear relationship between 

predictors and the log-odds of the outcome. 

 
Model Evaluation Metrics 
Under the evaluation process of the considered machine learning (ML) models, several 

performance metrics were recorded. In the current analysis, we focus on the most widely used 

measures in related literature (Hossin & Sulaiman, 2015): 

 
Here, True Positives (TP) represent the number of participants who experienced a stroke and 

were correctly identified by the model as stroke cases. True Negatives (TN) denote the number 

of participants who did not experience a stroke and were correctly predicted as non-stroke 

cases. False Positives (FP) correspond to the number of participants who were incorrectly 

classified as having a stroke when they actually did not. And False Negatives (FN) refer to the 

participants who had a stroke but were mistakenly predicted as non-stroke. 

From these quantities, we can derive two rates. True Positive Rate (TPR), also known as Recall 

or Sensitivity, quantifies the model’s ability to correctly identify stroke cases and is computed as 

 

False Positive Rate (FPR) measures the proportion of non-stroke participants incorrectly 

classified as stroke and is defined as 

 

TPR and FPR describe the trade-off between sensitivity and specificity across different 

classification thresholds. They are also used to construct the Receiver Operating Characteristic 

(ROC) curve, from which the Area Under the Curve (AUC) metric is derived, a higher AUC value 

indicates better discriminative performance of the model. 

 

Results 

Table 1 presents the baseline characteristics of participants according to stroke status. 

Significant differences were observed between stroke and non-stroke groups in most variables. 

Participants who had experienced a stroke were notably older and had higher 



 
average glucose levels and BMI values compared to those without stroke (all p < 0.001). A 

higher prevalence of hypertension and heart disease was also observed among stroke patients. 

Moreover, individuals with a history of stroke were more likely to be married, self- employed, or 

engaged in private-sector work, while the distribution of gender, residence type, and smoking 

status showed smaller differences. 



 

Table 1. Descriptive Analysis 
 

Variable Non-stroke 

(mean(sd))/ % 

Stroke 

(mean(sd))/ % 

p-value 

Age 41.76 ± 22.27 67.71 ± 12.40 <0.001*** 

 

Glucose Level 
 

104.00 ± 43.00 
 

134.57 ± 62.46 
 

<0.001*** 

 

BMI 
 

28.82 ± 7.91 
 

30.47 ± 6.33 
 

<0.001*** 

 

Gender 

Female 

 
 

58.1% 

 
 

57.4% 

 
 

0.870 

Male 40.9% 42.6%  

 

Hypertension 

No 

 

91.7% 

 

71.3% 

 

<0.001*** 

Yes 8.3% 28.7%  

 

Heart Disease 

No 

 
 

95.7% 

 
 

80.9% 

 
 

<0.001*** 

Yes 4.3% 19.1%  

 

Marriage 

No 

 
 

35.8% 

 
 

11.0% 

 
 

<0.001*** 

Yes 64.2% 89.0%  

 

Work Type 

Government job 

 
 

12.8% 

 
 

13.4% 

 
 

<0.001*** 

Private 57.1% 60.8%  

Self-employed 15.4% 25.4%  

Never worked 0.5% 0%  

Children 14.3% 0.5%  

 

Residence Type 

Rural 

 
 

49.3% 

 
 

47.8% 

 
 

0.725 

Urban 50.7% 52.2%  

 

Smoking Status 

Formerly smoked 

 

16.6% 

 

27.3% 

 

<0.001*** 

Never smoked 37.6% 40.2%  

Smokes 14.9% 18.7%  

Unknown 30.9% 13.9%  

 

Note: * p < 0.05, ** p < 0.01, *** p < 0.001 

When evaluating the model performance, we prioritize the recall rate, which is essential in 

stroke prediction to minimize the false negative rate. According to the results in Table 2, we 

focused on the predictive performances for the storke class. Among the three models, the 

Random Forest classifier achieved the highest overall performance, with the highest recall rate 



 

(98%) and an AUC of approximately 0.98, indicating excellent predictive capability of stroke 

and strong overall discriminative ability. The k-Nearest Neighbor (kNN) model also showed 

excellent predictive performance (Recall= 96%), and a comparable AUC (0.96), making it an 

efficient yet powerful non-parametric alternative. In contrast, the Logistic Regression model 

demonstrated lower predictive ability (Recall = 83%) and AUC (0.86), suggesting that its linear 

decision boundary is less efficient at identifying the true stroke cases in data characterized by 

nonlinear and interacting predictors. 

Table 2: Evaluation Metrics 
 

Model Accuracy Precision Recall F1- 

score 

AUC 

(ROC) 

Random 

Forest 

0.94 0.93 0.98 0.94 0.98 

 

k-Nearest 

Neighbors 

 

0.93 
 

0.88 
 

0.96 
 

0.92 
 

0.96 

 

Logistic 

Regression 

 

0.79 
 

0.77 
 

0.83 
 

0.79 
 

0.86 

 

 
Table 3 shows the feature importance analysis from the optimized Random Forest model 

indicates that age is the most dominant predictor of stroke, contributing nearly 35% of the total 

importance. The next most influential variables are average glucose level and BMI, which 

reflect metabolic health, suggesting that elevated blood glucose and higher body mass index 

are critical physiological indicators associated with stroke occurrence. Sociodemographic 

variables such as marital status (not married), work type (self-employed or government job), 

and residential area (rural) also show meaningful contributions, capturing lifestyle and 

environmental effects. Overall, these findings emphasize that both biological (age, glucose, 

BMI) and behavioral/lifestyle factors jointly influence stroke risk. 



 

 

Table 3. Feature Importance Analysis 
 

Rank Feature Importance 

1 Age 0.348 

2 Average Glucose Level 0.163 

3 BMI 0.138 

4 Ever Married = No 0.066 

5 Hypertension 0.046 

6 Residence Type = Rural 0.034 

7 Gender = Female 0.034 

8 Work Type = Self-employed 0.030 

9 Smoking Status = Never Smoked 0.027 

10 Work Type = Govt Job 0.026 

 

 
 

Conclusion 

This study examined how machine learning can be applied to predict stroke risk by analyzing 

clinical and behavioral factors, while also exploring its implications for healthcare management 

and business analytics. Among the models tested, the Random Forest classifier achieved the 

best performance, with an accuracy of 94% and an AUC of 0.98, demonstrating strong 

predictive power in identifying individuals at high risk. Feature importance analysis indicated that 

age, average glucose level, and BMI were the most influential predictors, followed by marital 

status, hypertension, and work type. These findings suggest that both physiological and lifestyle-

related factors contribute meaningfully to stroke prediction, aligning with previous research 

(Dubow et al., 2011; Rexrode et al., 2022). 

When doing the prediction, the random forest performed the best out of all three models. The 

performance is likely related to the algorithm’s ensemble structure. By aggregating the 

predictions from many decorrelated decision trees built on bootstrap samples and the random 

subsets of predictors, random forest can approximate complex non-linear and high-order 

interactions without requiring a prespecified functional form (Breiman, 2001). Moreover, because 

each tree uses threshold-based splits on the predictor values, the model depends mainly on the 

ordering rather than the exact magnitude of the observations, which makes it less sensitive to 

extreme values. These properties are valuable when modelling the heterogeneous clinical data, 

where the relationships between risk factors and stroke are unlikely to be linear and 

measurement error and outliers are common. 



 
From a business perspective, integrating predictive models into healthcare operations offers 

substantial economic and strategic value. Early identification of high-risk individuals enables 

hospitals, insurance providers, and digital health companies to implement preventive 

interventions, optimize resource allocation, and reduce treatment costs. Predictive analytics thus 

provide a foundation for data-driven decision-making and the development of personalized 

healthcare services. 

Despite those promising results, some challenges remain regarding data interpretability, 

standardization, and privacy protection. First, machine learning models often suffer from limited 

interpretability, making it difficult for clinicians to understand how some features contribute to an 

individual patient’s risk, which will hinder the clinical implementation and accountability. Second, 

several ethical and operational challenges have to be considered. In our analysis, the data 

originates from different hospitals, making the measurement might differ across the data. 

Representativeness is another concern, as models trained on a dataset that mainly consist older 

adults, it could be biased when applied to younger populations. 

Third, privacy also is an important challenge. When using sensitive healthcare information for 

model development, it requires compliance with data protection regulations and secure data 

storage. Future research should focus on developing explainable and scalable ML frameworks 

and incorporating broader datasets that include diverse populations, and more behavioral and 

socioeconomic dimensions. Overall, this study demonstrates that leveraging machine learning 

for stroke prediction holds both clinical benefits and business potential, advancing efficiency and 

innovation in the healthcare industry. 
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