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Abstract

This study investigates the applications of machine learning techniques for predicting the stroke
risks using clinical, behavioral and demographic features. Multiple classification models were
evaluated, and the random forest classifier achieved the highest performance, with a recall rate
for stroke of 98% and an AUC of 0.98. Feature importance analysis showed that age, average
glucose level, and BMI are the most influential predictors. From an operational perspective,
integrating predicting modelling into healthcare systems can facilitate early risk detection and
support personalized care strategies.
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Introduction

Based on the World Stroke Organization’s estimates, approximately 15 million people suffer
from a stroke each year, and about 5 million die from stroke-related reasons (World Health
Organization, 2021). Stroke is one of the leading causes of death and disability. It not only
affects those who are experiencing it but also their families and wider society (Edmans et al.,
2010), and it can occur in anyone at any age (Elloker & Rhoda, 2018). Therefore, a deeper
understanding of the stroke mechanisms and establishing effective risk stratification strategies
are urgently needed for both primary and secondary prevention. Managing modifiable risk
factors could help prevent nearly half of all strokes among individuals at high risk (Brainin et al.,
2018).

Machine Learning (ML) has been rapidly developed and implemented across disciplines and is
becoming a transformative force in healthcare research and practice (Dritsas & Trigka, 2022).
By leveraging algorithms that are capable of capturing complex, and often hidden relationships
among diverse clinical, demographic and physiological variables from many origins including
patients’ history, imaging and biomarkers (Singh et al., 2025), ML enables more accurate
prediction and decision-making than traditional statistical methods. One application of ML is in
precision medicine, where ML models are developed to identify the most effective treatment
strategies based on an individual’'s unique conditions (Lee et al., 2018). Machine learning
applications in healthcare have expanded rapidly. In the context of stroke, ML techniques have
been increasingly used to identify and predict risk factors that contribute to stroke occurrence,
recurrence, and recovery outcomes. Predictive models using logistic regression, random forests,
gradient boosting, and neural networks have shown strong performance in recognizing key
determinants such as age, hypertension, diabetes, smoking, and heart disease (Ahammad,
2022; Hassan et al., 2024; Khosla et al., 2010).
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Identifying these factors not only facilitates early intervention and resource allocation but also
provides data-driven guidance for healthcare systems to design more efficient prevention and
management strategies.

Backgrounds

Stroke is influenced by a complex interplay of nonmodifiable and modifiable risk factors.
Nonmodifiable factors include age, sex, race—ethnicity, and genetics. The incidence of stroke
doubles with every decade after age 55, and while the mean age of ischemic stroke remains
around 69 years, recent evidence shows a rise among adults aged 20-54 years, increasing from
12.9% in 1993/1994 to 18.6% in 2005 (George et al., 2011; Kissela et al., 2012; Roger et al.,
2012; Van Asch et al., 2010). The relationship between sex and stroke risk is age dependent:
younger women face similar or slightly higher risk than men—likely due to pregnancy, hormonal
contraception, and postpartum factors—whereas men have a higher risk in later life (Asplund et
al., 2009; Kapral et al., 2005; Reeves et al., 2009). Racial and ethnic disparities are also
pronounced. Black Americans experience twice the incidence and higher mortality rates than
White populations (Cruz-Flores et al., 2011; Gillum, 1999b), with similar elevations reported
among Hispanic/Latino and American Indian groups (Kleindorfer et al., 2006). These inequalities
are attributed in part to higher prevalence of hypertension, obesity, and diabetes (Giles et al.,
1995; Gillum, 1999a), but social determinants such as healthcare access, language, and nativity
also play critical roles (Howard et al., 2011; Joubert et al., 2008). Genetic predisposition further
contributes to stroke risk: a positive parental or family history increases the likelihood of stroke,
with genetic effects varying across age, sex, and ethnicity (Seshadri et al., 2010).

Modifiable risk factors provide key targets for prevention. Hypertension remains the most
significant, accounting for roughly 54% of stroke population attributable risk in the
INTERSTROKE study (Donnell et al., 2010). The risk of stroke rises progressively with blood
pressure, even below the hypertensive threshold (Vasan et al., 2002). Diabetes mellitus doubles
stroke risk and accounts for about 20% of deaths in diabetic patients, with longer duration of
diabetes further increasing risk (Banerjee et al., 2012; Sui et al., 2011). Other major modifiable
factors include atrial fibrillation and atrial cardiopathy (Yiin et al., 2014), dyslipidemia (particularly
high total cholesterol and low HDL levels) (Horenstein et al., 2002), sedentary lifestyle, poor diet,
obesity, and metabolic syndrome (Zhou et al., 2007), as well as alcohol consumption, illicit drug
use, and cigarette smoking—the latter nearly doubling stroke risk and contributing to 15% of
stroke deaths annually (Kuo et al., 2013). Emerging evidence also links inflammation, infection,
and air pollution exposure to increased stroke incidence (Kaptoge et al., 2010). Together, these
epidemiological findings underscore that both traditional and novel risk factors—spanning
biological, behavioral, and environmental domains—must be integrated into predictive models
and prevention strategies.

Machine learning (ML) has emerged as a powerful analytical framework for predicting stroke risk
by leveraging large-scale clinical and behavioral datasets. Numerous studies have applied
classical ML algorithms—such as Logistic Regression (LR), Decision Tree (DT), Random Forest
(RF), Support Vector Machine (SVM), Naive Bayes (NB), and K-Nearest Neighbours (KNN)—to
identify individuals at high risk of stroke, achieving accuracies ranging from 82% to 96%
(Kokkotis et al., 2022; Sirsat et al., 2020; Wu & Fang, 2020). Among these, tree-based
ensemble methods such as RF and Gradient Boosting consistently outperform traditional
classifiers in accuracy, precision, and AUC performance. For instance, several studies reported
RF models achieving 95-96% accuracy (Geethanjali et al., 2021; Tazin et al., 2021), while NB
and LR models achieved competitive but slightly lower results (82—86%) (Geethanjali et al.,
2021). These results highlight ML’s potential to capture nonlinear relationships between stroke
risk and clinical features such as age, hypertension, heart disease, glucose level, and smoking
status (Sailasya & Kumari, 2021).
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Building on these foundational methods, researchers have explored advanced and hybrid
approaches to enhance predictive performance. Shanthi et al.(2009) applied an Artificial Neural
Network (ANN) to predict thromboembolic strokes, reaching 89% accuracy. Similarly, Ahmed et
al. (2019) achieved 90% accuracy using ML algorithms on the Apache Spark platform, while
Tazin et al. (2021) improved accuracy to 95% after applying normalization and feature-ranking
procedures. Other hybrid models—such as the Minimal Genetic Folding (MGF) algorithm
(Mezher, 2022) and the RXLM ensemble combining RF, XGBoost, and LightGBM (Alruily et al.,
2023)—further advanced predictive capacity, achieving 83% and 96.3% accuracy, respectively.
To address data imbalance and enhance generalizability, many studies incorporated techniques
such as SMOTE oversampling, feature selection, and outlier control (Sowjanya & Mrudula,
2023; Wongvorachan et al., 2023). Some even implemented real-time or cloud-based prediction
tools that can collect user data and deliver early stroke warnings with 96% accuracy (Islam et
al., 2021).

While progress in predictive modeling is significant, key methodological and practical challenges
remain. Many existing studies rely on relatively small or imbalanced datasets, or focus on a
limited number of attributes, constraining model robustness (Chen, 2023; Nijman et al., 2022;
Paul et al., 2022). Furthermore, the high-performing ensemble and neural network models often
function as “black boxes,” limiting interpretability and hindering clinical adoption. Another
limitation lies in the lack of standardized evaluation metrics and external validation, which
restricts comparability across studies. Therefore, the literature increasingly calls for the
development of explainable ML frameworks, integration of diverse clinical and behavioral
features, and comprehensive benchmarking on larger datasets. Such efforts are critical to
ensure that predictive analytics can move beyond model optimization toward actionable,
interpretable tools that support early stroke prevention and healthcare decision- making.

Methods

Our research utilized the publicly available Stroke Prediction Dataset from Kaggle (Stroke
Prediction Dataset, 2025). From this dataset, we included only participants having no missing
values, resulting in a total sample size of 4909 individuals. The dataset contains 10 predictor
variables and one binary outcome variable indicating whether the participant has ever
experienced a stroke. The predictors are defined as follows: Age (in years), Gender, Diagnosed
hypertension, Heart Disease, Ever Married, Work Type (5 categories: private, self- employed,
government job, never worked and children), Residence Type (urban, rural), Average Glucose
Level (mg/dL), Body Mass Index (BMI) (kg/m?), and Smoking Status (three categories: currently
smokes, never smoked, and formerly smoked). The outcome variable, Stroke, represents
whether the participant has previously suffered a stroke. Among these variables, age, average
glucose level, and BMI are continuous, while the remaining features are categorical. We
normalized the continuous variables and performed one-hot encoding for the categorical
variables. To address the class imbalance between stroke and non-stroke cases in subsequent
analyses, we applied the Synthetic Minority Oversampling Technique (SMOTE) (Maldonado et
al., 2019), which synthetically augments the minority (stroke) class to achieve a balanced
dataset for model training.

Machine Learning Models

Random Forest Classifier

The Random Forest (RF) algorithm is an ensemble learning method that constructs multiple
decision trees and aggregates their predictions to improve generalization and classification
performance. Given a training dataset:

D = { (x,y)li=y
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where xi € Rp denotes the feature vector with p predictors and y; € {0,1} represents the binary
class label (stroke or non-stroke). The RF algorithm performs the following steps:

1. Bootstrap sampling: Draw T bootstrap samples from the training set.

2. Tree growth: For each sample, grow an unpruned classification tree. At each node,
a random subset of m < p features is selected, and the best split among these m
features is chosen to minimize impurity (e.g., Gini index or entropy).

3. Aggregation: Each tree h(x) provides a class prediction. The final prediction of the
forest is obtained by majority voting across all trees:

~ T
hRF(x) = mode{ ht(x)}t:l

4. This ensemble approach reduces variance and mitigates overfitting by combining
multiple decorrelated classifiers.

k-Nearest Neighbor (kNN) Classifier
The k-Nearest Neighbor (kNN) algorithm is a non-parametric, instance-based learning method
that classifies a new observation based on the majority label among its nearest neighbors in
the training set. For any two data points xi and x;, the distance function is defined as:

d(xi, %) = “xf' xf|| = | (i %)

Given a new observation X, the classifier identifies its k nearest neighbors, denoted Ny(x,),
and assigns the most frequent class label among them:

ERNN(XU) = mode{yi: X; € Nk(xU)}

For binary classification problems where yi € {1, +1}, the decision rule can equivalently be
written as:

) .
hkNN(xU) = sign ( (E) A';rqE Nk(x”}yi)

The hyperparameter k controls the bias—variance trade-off: smaller k values lead to lower
bias but higher variance, while larger k values produce smoother decision boundaries with
higher bias.

Logistic Regression

The Logistic Regression (LR) algorithm is a statistical learning method used for binary
classification problems. It models the conditional probability of the dependent variable yi €
{0,1} given the predictors xi € Rr using the logistic (sigmoid) function. The model assumes a
linear relationship between the predictors and the log-odds of the probability of the positive
class. The logistic regression function is defined as:

1
(1 + e{_{ﬁu*' Bixir+ BaXippt - + ﬁpxip)})

P(x;) =
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The logistic regression model estimates the coefficients B = (Bo, B1, ..., Bp) by maximizing the
log-likelihood function £(B):

I(B) = £, lyi log log () + (1 — y) loglog (1 — m) ], m = P(x,)

The fitted probabilities can then be used for classification, where an observation is predicted
as stroke-positive if the estimated probability exceeds 0.5. This model provides a simple,
interpretable baseline for binary classification, assuming a linear relationship between
predictors and the log-odds of the outcome.

Model Evaluation Metrics

Under the evaluation process of the considered machine learning (ML) models, several
performance metrics were recorded. In the current analysis, we focus on the most widely used
measures in related literature (Hossin & Sulaiman, 2015):

Recall —TP
O T TP Y FN
procision — 17
recision = W

(Precision * Recall)
F1 =

Precision + Recall
(TP + TN)

(TP + TN + FP + FN)
AUC = [ *TPR(FPR) d(FPR)

Here, True Positives (TP) represent the number of participants who experienced a stroke and
were correctly identified by the model as stroke cases. True Negatives (TN) denote the number
of participants who did not experience a stroke and were correctly predicted as non-stroke
cases. False Positives (FP) correspond to the number of participants who were incorrectly
classified as having a stroke when they actually did not. And False Negatives (FN) refer to the
participants who had a stroke but were mistakenly predicted as non-stroke.

Accuracy =

From these quantities, we can derive two rates. True Positive Rate (TPR), also known as Recall
or Sensitivity, quantifies the model’s ability to correctly identify stroke cases and is computed as

TPR _jfL_
" TP+FN

False Positive Rate (FPR) measures the proportion of non-stroke participants incorrectly
classified as stroke and is defined as

TPR and FPR describe the trade-off between sensitivity and specificity across different
classification thresholds. They are also used to construct the Receiver Operating Characteristic
(ROC) curve, from which the Area Under the Curve (AUC) metric is derived, a higher AUC value
indicates better discriminative performance of the model.

Results

Table 1 presents the baseline characteristics of participants according to stroke status.
Significant differences were observed between stroke and non-stroke groups in most variables.
Participants who had experienced a stroke were notably older and had higher
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average glucose levels and BMI values compared to those without stroke (all p < 0.001). A
higher prevalence of hypertension and heart disease was also observed among stroke patients.
Moreover, individuals with a history of stroke were more likely to be married, self- employed, or
engaged in private-sector work, while the distribution of gender, residence type, and smoking
status showed smaller differences.
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Table 1. Descriptive Analysis

Variable Non-stroke Stroke p-value
(mean(sd))/ % (mean(sd))/ %
Age 41.76 + 22.27 67.71+12.40 <0.001***
Glucose Level 104.00 £ 43.00 134.57 £ 62.46 <0.001***
BMI 28.82 + 7.91 30.47 £6.33 <0.001***
Gender
Female 58.1% 57.4% 0.870
Male 40.9% 42.6%
Hypertension
No 91.7% 71.3% <0.001***
Yes 8.3% 28.7%
Heart Disease
No 95.7% 80.9% <0.001***
Yes 4.3% 19.1%
Marriage
No 35.8% 11.0% <0.001***
Yes 64.2% 89.0%
Work Type
Government job 12.8% 13.4% <0.001***
Private 57.1% 60.8%
Self-employed 15.4% 25.4%
Never worked 0.5% 0%
Children 14.3% 0.5%
Residence Type
Rural 49.3% 47.8% 0.725
Urban 50.7% 52.2%
Smoking Status
Formerly smoked 16.6% 27.3% <0.001***
Never smoked 37.6% 40.2%
Smokes 14.9% 18.7%
Unknown 30.9% 13.9%

Note: * p < 0.05, ** p <0.01, *** p < 0.001

When evaluating the model performance, we prioritize the recall rate, which is essential in
stroke prediction to minimize the false negative rate. According to the results in Table 2, we
focused on the predictive performances for the storke class. Among the three models, the
Random Forest classifier achieved the highest overall performance, with the highest recall rate
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(98%) and an AUC of approximately 0.98, indicating excellent predictive capability of stroke
and strong overall discriminative ability. The k-Nearest Neighbor (kNN) model also showed
excellent predictive performance (Recall= 96%), and a comparable AUC (0.96), making it an
efficient yet powerful non-parametric alternative. In contrast, the Logistic Regression model
demonstrated lower predictive ability (Recall = 83%) and AUC (0.86), suggesting that its linear
decision boundary is less efficient at identifying the true stroke cases in data characterized by
nonlinear and interacting predictors.

Table 2: Evaluation Metrics

Model Accuracy Precision Recall F1- AUC
score (ROC)

Random 0.94 0.93 0.98 0.94 0.98
Forest
k-Nearest 0.93 0.88 0.96 0.92 0.96
Neighbors
Logistic 0.79 0.77 0.83 0.79 0.86
Regression

Table 3 shows the feature importance analysis from the optimized Random Forest model
indicates that age is the most dominant predictor of stroke, contributing nearly 35% of the total
importance. The next most influential variables are average glucose level and BMI, which
reflect metabolic health, suggesting that elevated blood glucose and higher body mass index
are critical physiological indicators associated with stroke occurrence. Sociodemographic
variables such as marital status (not married), work type (self-employed or government job),
and residential area (rural) also show meaningful contributions, capturing lifestyle and
environmental effects. Overall, these findings emphasize that both biological (age, glucose,
BMI) and behavioral/lifestyle factors jointly influence stroke risk.
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Table 3. Feature Importance Analysis

Rank Feature Importance
1 Age 0.348
2 Average Glucose Level 0.163
3 BMI 0.138
4 Ever Married = No 0.066
5 Hypertension 0.046
6 Residence Type = Rural 0.034
7 Gender = Female 0.034
8 Work Type = Self-employed 0.030

9 Smoking Status = Never Smoked 0.027

10 Work Type = Govt Job 0.026

Conclusion

This study examined how machine learning can be applied to predict stroke risk by analyzing
clinical and behavioral factors, while also exploring its implications for healthcare management
and business analytics. Among the models tested, the Random Forest classifier achieved the
best performance, with an accuracy of 94% and an AUC of 0.98, demonstrating strong
predictive power in identifying individuals at high risk. Feature importance analysis indicated that
age, average glucose level, and BMI were the most influential predictors, followed by marital
status, hypertension, and work type. These findings suggest that both physiological and lifestyle-
related factors contribute meaningfully to stroke prediction, aligning with previous research
(Dubow et al., 2011; Rexrode et al., 2022).

When doing the prediction, the random forest performed the best out of all three models. The
performance is likely related to the algorithm’s ensemble structure. By aggregating the
predictions from many decorrelated decision trees built on bootstrap samples and the random
subsets of predictors, random forest can approximate complex non-linear and high-order
interactions without requiring a prespecified functional form (Breiman, 2001). Moreover, because
each tree uses threshold-based splits on the predictor values, the model depends mainly on the
ordering rather than the exact magnitude of the observations, which makes it less sensitive to
extreme values. These properties are valuable when modelling the heterogeneous clinical data,
where the relationships between risk factors and stroke are unlikely to be linear and
measurement error and outliers are common.
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From a business perspective, integrating predictive models into healthcare operations offers
substantial economic and strategic value. Early identification of high-risk individuals enables
hospitals, insurance providers, and digital health companies to implement preventive
interventions, optimize resource allocation, and reduce treatment costs. Predictive analytics thus
provide a foundation for data-driven decision-making and the development of personalized
healthcare services.

Despite those promising results, some challenges remain regarding data interpretability,
standardization, and privacy protection. First, machine learning models often suffer from limited
interpretability, making it difficult for clinicians to understand how some features contribute to an
individual patient’s risk, which will hinder the clinical implementation and accountability. Second,
several ethical and operational challenges have to be considered. In our analysis, the data
originates from different hospitals, making the measurement might differ across the data.
Representativeness is another concern, as models trained on a dataset that mainly consist older
adults, it could be biased when applied to younger populations.

Third, privacy also is an important challenge. When using sensitive healthcare information for
model development, it requires compliance with data protection regulations and secure data
storage. Future research should focus on developing explainable and scalable ML frameworks
and incorporating broader datasets that include diverse populations, and more behavioral and
socioeconomic dimensions. Overall, this study demonstrates that leveraging machine learning
for stroke prediction holds both clinical benefits and business potential, advancing efficiency and
innovation in the healthcare industry.
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